Generic selectors
Exact matches only
Search in title
Search in content

Python Complex Numbers

A Complex Number is any number of the form a + bj, where a and b are real numbers, and j*j = -1.

In Python, there are multiple ways to create such a Complex Number.

Create a Complex Number in Python

  • We can directly use the syntax a + bj to create a Complex Number.
>>> a = 4 + 3j
>>> print(a)
>>> print(type(a))
<class 'complex'>
  • We can also use the complex Class to create a complex number
>>> a = complex(4, 3)
>>> print(type(a))
<class 'complex'>
>>> print(a)

Real and Imaginary Parts in Complex Number

Every complex number (a + bj) has a real part (a), and an imaginary part (b).

To get the real part, use number.real, and to get the imaginary part, use number.imag.

>>> a
>>> a.real
>>> a.imag

Conjugate of a Complex Number

The conjugate of a complex number a + bj is defined as a - bj. We can also use number.conjugate()method to get the conjugate.

>>> a
(4 + 3j)
>>> a.conjugate()

Arithmetic Operations on Complex Numbers

Similar to real numbers, Complex Numbers also can be added, subtracted, multiplied and divided. Let us look at how we could do this in Python.

a = 1 + 2j
b = 2 + 4j
print('Addition =', a + b)
print('Subtraction =', a - b)
print('Multiplication =', a * b)
print('Division =', a / b)


Addition = (3+6j)
Subtraction = (-1-2j)
Multiplication = (-6+8j)
Division = (2+0j)

NOTE: Unlike real numbers, we cannot compare two complex numbers. We can only compare their real and imaginary parts individually, since they are real numbers. The below snippet proves this.

>>> a
>>> b
>>> a < b
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'complex' and 'complex'

Phase (Argument) of a Complex Number

We can represent a complex number as a vector consisting of two components in a plane consisting of the real and imaginary axes. Therefore, the two components of the vector are it’s real part and it’s imaginary part.

Complex Number Vector 1
Complex Number Vector

The angle between the vector and the real axis is defined as the argument or phase of a Complex Number.

It is formally defined as :

phase(number) = arctan(imaginary_part / real_part)

where the arctan function is the tan inverse mathematical function.

In Python, we can get the phase of a Complex Number using the cmath module for complex numbers. We can also use the math.arctan function and get the phase from it’s mathematical definition.

import cmath
import math

num = 4 + 3j

# Using cmath module
p = cmath.phase(num)
print('cmath Module:', p)

# Using math module
p = math.atan(num.imag/num.real)
print('Math Module:', p)


cmath Module: 0.6435011087932844
Math Module: 0.6435011087932844

Note that this function returns the phase angle in radians, so if we need to convert to degrees, we can use another library like numpy.

import cmath
import numpy as np

num = 4 + 3j

# Using cmath module
p = cmath.phase(num)
print('cmath Module in Radians:', p)
print('Phase in Degrees:', np.degrees(p))


cmath Module in Radians: 0.6435011087932844
Phase in Degrees: 36.86989764584402

Rectangular and Polar Coordinates

A Complex Number can be written in Rectangular Coordinate or Polar Coordinate formats using the cmath.rect() and cmath.polar() functions.

>>> import cmath
>>> a = 3 + 4j
>>> polar_coordinates = cmath.polar(a)
>>> print(polar_coordinates)
(5.0, 0.9272952180016122)

>>> modulus = abs(a)
>>> phase = cmath.phase(a)
>>> rect_coordinates = cmath.rect(modulus, phase)
>>> print(rect_coordinates)

Constants in the cmath Module

There are special constants in the cmath module. Some of them are listed below.

print('π =', cmath.pi)
print('e =', cmath.e)
print('tau =', cmath.tau)
print('Positive infinity =', cmath.inf)
print('Positive Complex infinity =', cmath.infj)
print('NaN =', cmath.nan)
print('NaN Complex =', cmath.nanj)


π = 3.141592653589793
e = 2.718281828459045
tau = 6.283185307179586
Positive infinity = inf
Positive Complex infinity = infj
NaN = nan
NaN Complex = nanj

Trigonometric Functions

Trigonometric functions for a complex number are also available in the cmath module.

import cmath

a = 3 + 4j

print('Sine:', cmath.sin(a))
print('Cosine:', cmath.cos(a))
print('Tangent:', cmath.tan(a))

print('ArcSin:', cmath.asin(a))
print('ArcCosine:', cmath.acos(a))
print('ArcTan:', cmath.atan(a))


Sine: (3.853738037919377-27.016813258003936j)
Cosine: (-27.034945603074224-3.8511533348117775j)
Tangent: (-0.0001873462046294784+0.999355987381473j)
ArcSin: (0.6339838656391766+2.305509031243477j)
ArcCosine: (0.9368124611557198-2.305509031243477j)
ArcTan: (1.4483069952314644+0.15899719167999918j)

Hyperbolic Functions

Similar to Trigonometric functions, Hyperbolic Functions for a complex number are also available in the cmath module.

import cmath

a = 3 + 4j

print('Hyperbolic Sine:', cmath.sinh(a))
print('Hyperbolic Cosine:', cmath.cosh(a))
print('Hyperbolic Tangent:', cmath.tanh(a))

print('Inverse Hyperbolic Sine:', cmath.asinh(a))
print('Inverse Hyperbolic Cosine:', cmath.acosh(a))
print('Inverse Hyperbolic Tangent:', cmath.atanh(a))


Hyperbolic Sine: (-6.5481200409110025-7.61923172032141j)
Hyperbolic Cosine: (-6.580663040551157-7.581552742746545j)
Hyperbolic Tangent: (1.000709536067233+0.00490825806749606j)
Inverse Hyperbolic Sine: (2.2999140408792695+0.9176168533514787j)
Inverse Hyperbolic Cosine: (2.305509031243477+0.9368124611557198j)
Inverse Hyperbolic Tangent: (0.11750090731143388+1.4099210495965755j)

Exponential and Logarithmic Functions

import cmath
a = 3 + 4j
print('e^c =', cmath.exp(a))
print('log2(c) =', cmath.log(a, 2))
print('log10(c) =', cmath.log10(a))
print('sqrt(c) =', cmath.sqrt(a))


e^c = (-13.128783081462158-15.200784463067954j)
log2(c) = (2.321928094887362+1.3378042124509761j)
log10(c) = (0.6989700043360187+0.4027191962733731j)
sqrt(c) = (2+1j)

Miscellaneous Functions

There are some miscellaneous functions to check if a complex number is finite, infinite or nan. There is also a function to check if two complex numbers are close.

>>> print(cmath.isfinite(2 + 2j))

>>> print(cmath.isfinite(cmath.inf + 2j))

>>> print(cmath.isinf(2 + 2j))

>>> print(cmath.isinf(cmath.inf + 2j))

>>> print(cmath.isinf(cmath.nan + 2j))

>>> print(cmath.isnan(2 + 2j))

>>> print(cmath.isnan(cmath.inf + 2j))

>>> print(cmath.isnan(cmath.nan + 2j))

>>> print(cmath.isclose(2+2j, 2.01+1.9j, rel_tol=0.05))

>>> print(cmath.isclose(2+2j, 2.01+1.9j, abs_tol=0.005))


We learned about the Complex Numbers module, and various functions associated with the cmath module.